Preliminary communication

The reactions of bis-isocyanide derivatives of Pd^{II} with bidentate ligands

R. ZANELLA, T. BOSCHI, M. NICOLINI and U. BELLUCO Istituto Chimica Generale, Facoltà Chimica Industriale, The University, Venezia (Italy) (Received November 21st, 1972)

SUMMARY

The complex $[Pd(CNPh)_2Cl_2]$ reacts with ethylenediamine, 2-aminopyridine, o-phenylenediamine, ethanolamine, and allylamine at 1/1 Pd/bi-dentate ligand molar ratios to give monocarbene complexes. A dicarbene derivative is obtained in the reaction with an excess of 2-aminopyridine.

Bis-isocyanide complexes of Pd^{II} and Pt^{II} are known to react with alcohols and amines to give mono-¹⁻⁴ and di-carbene⁵⁻⁷ complexes. Transition metal complexes containing cyclic dicarbene groups were made a long time ago⁸, but their nature was established only recently⁹⁻¹². They were obtained from reactions of bifunctional molecules (hydrazines and hydroxylamine) with isocyanide derivatives of Pt^{II}.

We have studied the reactions of $[Pd(CNPh)_2Cl_2]$ with the bidentate ligands ethylenediamine (en), 2-aminopyridine (ampy), o-phenylenediamine, ethanolamine, and allylamine. Satisfactory C, H, N and Cl analyses were obtained in all cases.

With a molar ratio of Pd/bidentate ligand = 1/1, only monocarbene complexes could be obtained. These are non-conducting species in $10^{-3}M$ solutions in CH₂Cl₂, so that ionic formulations such as:

which would originate from ring closure of the attacking bifunctional groups, can be ruled out. This is consistent with the scarcity of cationic Pd^{II} complexes. The stability of mono-

TABLE 1 SELECTED INFRARED DATA		• • • • •			C9 2
Complex	v(N-H) (cm ⁻¹) ^a	v(CN), (cm ⁻¹)	$v(C^{\dots}N).$	v(PdCl) (cm ⁻¹)	
[Pd(C ₆ H ₅ NC) {C ₆ H ₅ NHC(NHC ₇ H ₄ NH ₂)} Cl ₁]	3217 m, 3176 m, 3061 m (3317 m), (3183 m), (3081 w)	2212 vs	1568 s	303 s, 278 ms	
[Pd(C,H,NC) {C,H,NHC(NHC,H,N)} Cl ₂]	3250 m, br, 3150 w, 3060 w (3380 m), (3177 m), (3134 w)	2219 vs	• 1561 vs	314 s, 284 m	
$\left[Pd\left(C_{6}H_{5}NC\right) \left\{ C_{6}H_{5}NHC\left(NHC_{6}H_{4}NH_{2}\right) \right\} Cl_{2} \right]$	3227 m, 3173 m, 3140 sh	2211 vs	1553 s	301 vs, 279 m	
[Pd(C ₆ H ₅ NC) {C ₆ H ₅ NHC(NHC ₃ H ₅)} Cl ₂]	3210 m, 3048 w (3342 m), (3221 m)	2204 vs	1563 s	323 ms, 286 ms, 276 sh	- 10 - 10 - 10
[Pd(C ₆ H ₅ NC) {C ₆ H ₅ NHC(NHC ₂ H ₄ OH)} Cl ₂]	320 m, vbr (3230 m)	2201 vs	1569 s, 1536 s	323 m, 285 sh, 279 w	-
$Pd \{ C_a H_s NHC(NHC_s H_A N) \}$, Cl_2	unresolved	1 	1570 s, br	287 m	
a_{ν} (N-H): the values in parentheses refer to CHCl ₃	solutions.				

PRELIMINARY COMMUNICATION

carbene cationic complexes of type $[PdL_2(carbene)Cl]ClO_4$ (L = isocyanide, tertiary phosphine) depends on the presence of effective σ -donor ligands and non-coordinating anions¹³.

Molecular weights measured in methanol are slightly higher than those calculated for the monomeric species, probably owing to intermolecular association. Such interaction has previously been observed in amine complexes of Pt^{II} , and was attributed to the formation of dinuclear species³, ¹⁴⁻¹⁵. The UV and visible spectra of all the complexes in $10^{-3}M$ solutions in CH₂Cl₂ are typical of 4-coordinate planar complexes, so interaction of the free coordination site of the bidentate ligand with the empty, initially p_z , metal orbital to give 5-coordinate adducts is ruled out. Formation of 5-coordinate species is observed with sterically rigid bi- and poly-dentate ligands bearing P or As as the donor atoms¹⁶⁻¹⁷, but there is no evidence for the occurrence of 5-coordination in complexes of Pd^{II} with o-dimethylaminophenyldiethylphosphine¹⁸.

Selected infrared data are shown in Table 1. There is a single intense band in the range 2219–2201 cm⁻¹ for all the complexes, and this is assigned to $\nu(C \equiv N)$ of the remaining isocyanide ligand. Formation of the carbene grouping is indicated by an intense absorption in the 1569–1536 cm⁻¹ range, attributable to $\nu(N \xrightarrow{\dots} C)$ of the carbene moiety, and by the low values of some $\nu(N - H)$ absorptions^{1,3,5-6}. The *cis*-configuration

for these products is indicated by the presence of two bands assigned to ν (Pd--Cl) in the range 323-276 cm⁻¹; the higher of these frequencies is assigned to the chlorine atom *trans* to the isocyanide group, and the lower to the chlorine atom *trans* to the carbene. The *trans* influence of a carbene ligand is known to be comparable to that of a phosphine ligand owing to its high σ -donating ability^{1,13}. The observed frequencies are relatively low in comparison with those of other isocyanide and carbene Pd^{II} complexes, probably owing to the association mentioned above.

The non-formation of cyclic di-carbene complexes may be due to steric factors. Bis-isocyanide complexes of Pd^{II} are known to react with aliphatic and aromatic amines to give dicarbene complexes⁵. Similarly, the complex $[Pd(CNPh)_2Cl_2]$ reacts with a 6-fold excess of (ampy) to give the di-carbene derivative $\{Pd[PhNHC(NHC_5H_4N)]_2Cl_2\}$. It has been found that the rate of nucleophilic attack on isocyanide carbon is related to the value of the Hammett σ -constant of the attacking amines¹⁹, and thus, in the case of ethylenediamine derivatives, the formation of a cyclic dicarbene should be favored by both electronic and entropy factors. On the other hand, a highly unstable 7-membered ring would result, and this renders the formation of a cyclic dicarbene unlikely.

We are currently carrying out systematic investigations on the reactivity of monomeric or dimeric mixed phosphino- and carbonyl-isocyanide derivatives of Pd^{II} with bidentate ligands. We are also studying the unusual behaviour of some cationic derivatives of such complexes.

ACKNOWLEDGEMENTS

We thank Dr. Fondello for recording the UV spectra and for stimulating discussion.

REFERENCES

- 1 B. Crociani, T. Boschi and U. Belluco, Inorg. Chem., 9 (1970) 2021.
- 2 E.M. Badley, J. Chatt, R.L. Richards and G.A. Sim, Chem. Commun., (1969) 1322.
- 3 F. Bonati and G. Minghetti, J. Organometal. Chem., 24 (1970) 251.
- 4 F. Bonati, G. Minghetti, T. Boschi and B. Crociani, J. Organometal. Chem., 25 (1970) 225.
- 5 B. Crociani, T. Boschi, G.C. Troilo and U. Croatto, Inorg. Chim. Acta, in press.
- 6 J. Chatt, R.L. Richards and G.H.D. Royston, Inorg. Chim. Acta, in press.
- 7 P.M. Treichel, W.J. Knebel and R.W. Hess, J. Amer. Chem. Soc., 93 (1971) 5424.
- 8 L. Chugaev, M.S. Grigorieva and A. Posniak, Z. Anorg. Allg. Chem., 148 (1925) 37.
- 9 G. Ronschias and B.L. Shaw, Chem. Commun., (1970) 183.
- 10 A. Burke, A.L. Balch and J.H. Enemark, J. Amer. Chem. Soc., 92 (1970) 2555.
- 11 G. Rouschias and B.L. Shaw, J. Chem. Soc. (A), (1971) 2097.
- 12 W.M. Butler and J.M. Enemark, Inorg. Chem., 10 (1971) 2416.
- 13 L. Busetto, A. Palazzi, B. Crociani, U. Belluco, E.M. Badley, B.J. Kilby and L.R. Richards, J. Chem. Soc., Dalton, (1972) 1800.
- 14 D.M. Adams, J. Chatt, J. Gerrat and A.D. Westland, J. Chem. Soc., (1964) 734.
- 15 K. Nakamoto, P.J. McCarthy, J. Fujita, R.A. Condrate and G.T. Behnke, Inorg. Chem., 4 (1965) 36.
- 16 O.St.C. Headly, R.S. Nyholm, C.A. McAuliffe, L. Sindellari, M.L. Tobe and L.N. Venanzi, *Inorg. Chim. Acta*, 4 (1970) 93 and references therein.
- 17 C.M. Harris and R.S. Nyholm, J. Chem. Soc., (1956) 4375.
- 18 Frederick G. Mann and H.R. Watson, J. Chem. Soc., (1957) 3950.
- 19 B. Crociani, T. Boschi, M. Nicolini and U. Belluco, Inorg. Chem., 11 (1972) 1292.